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Linear Approximation of Functional Programs

This is mostly joint work with Lionel Vaux Auclair. 1/27



Linear Approximation of Functional Programs

program ≔ instruction (program, …, program)

program … program

⇝ result
= program that
cannot be further
executed
(normal form)

But the result might be infinite and infinitely far:

pi(0) ⇝ •

3 pi(1)

⇝ •

3 •

1 pi(2)

⇝ …
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Linear Approximation of Functional Programs

What we can compute in finite time are partial results:

⊥ •

3 ⊥

•

3 •

1 ⊥

…

As a summary: [Wadsworth, Hyland, Barendregt, 1970s]

program result

program partial
result

(infinite) execution

(finite) partial execution

⊑

and the result is the limit of all partial results:
it’s a continuous approximation.
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Linear Approximation of Functional Programs

This continuous approximation:

program result

program partial
result

(infinite) execution

(finite) partial execution

⊑

can be refined into a linear one: [Ehrhard-Regnier, 2000s]

program result

linear
program

linear
partial result

(infinite) execution

⊑

linear execution (finite!)
⊑
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Linear Approximation of Functional Programs

Linear programs: each argument of a function is used exactly once.

program ≔ instruction

program … program

linear program ≔ instruction

[ linear
program ,… , linear

program ] … [ linear
program ,… , linear

program ]
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Linear Approximation of Functional Programs
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Linear Approximation of the λ-calculus

λ-terms:

𝑀,𝑁,… ≔ 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁

| ⊥

𝑥 ↦ 𝑀 𝑀(𝑁)
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Linear Approximation of the λ-calculus

λ⊥-terms:

𝑀,𝑁,… ≔ 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁 | ⊥
𝑥 ↦ 𝑀 𝑀(𝑁)
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Let’s go more technical



Approximations of the λ-calculus

The continuous approximation:

program result

program partial
result

(infinite) execution

(finite) partial execution

⊑

The linear approximation:

program result

linear
program

linear
partial result

(infinite) execution

⊑

linear execution (finite!)
⊑
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The Böhm semantics

What is finite prefix of stable information?
A head normal form 𝜆𝑥1…𝜆𝑥.𝑚.(𝑦)𝑀1…𝑀𝑛.

What is the total information a term can output?
Its Böhm tree:

BT(𝑀) ≔ { 𝜆 ⃗𝑥.(𝑦) BT(𝑀1) … BT(𝑀𝑛) if𝑀 ⟶∗
𝛽 𝜆 ⃗𝑥.(𝑦)𝑀1…𝑀𝑛

⊥ otherwise.

This is a coinductive definition: BT(𝑌) = 𝜆𝑓.𝑓𝑓𝑓…
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Approximations of the λ-calculus

The continuous approximation:

𝑀 BT(𝑀)

𝑀 partial
result

(infinite) execution

(finite) partial execution

⊑

The linear approximation:

𝑀 BT(𝑀)

linear
program

linear
partial result

(infinite) execution

⊑

linear execution (finite!)
⊑
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An infinitary λ-calculus

• Infinitary terms
(via coinduction, metric completion, ideal completion)

• Infinitary reductions
(via coinduction, transfinite sequences of reductions)

Theorem [Kennaway et al. 1997]

⟶∞
𝛽⊥ is confluent.

Corollary
BT(𝑀) is the unique β⊥-normal form of𝑀 through⟶∞

𝛽⊥.
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Approximations of the λ-calculus

The continuous approximation:

𝑀 BT(𝑀)

𝑀 partial
result

𝛽⊥
∞

(finite) partial execution

⊑

The linear approximation:

𝑀 BT(𝑀)

linear
program

linear
partial result

𝛽⊥
∞

⊑

linear execution (finite!)

⊑
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The continuous approximation

The continuous approximation:

𝑀 BT(𝑀)

𝑀 𝑀′ 𝑃

𝛽⊥
∞

𝛽
∗ ⊑

⊑

Continous approximation theorem

• 𝒜(𝑀) ≔ { 𝑃 in β⊥-nf || ∃𝑀′, 𝑀 ⟶∗
𝛽 𝑀′ ⊑𝑃 } is directed.

• ⨆𝒜(𝑀) = BT(𝑀).

13/27



The linear approximation

𝑀 BT(𝑀)

linear
program

linear
partial result

𝛽⊥
∞

⊑

linear execution (finite!)

⊑
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The resource calculus

Linear programs are resource λ-terms:

𝑠, 𝑡,… ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝑠 [𝑡1,… , 𝑡𝑛]

A λ-term is Taylor expanded into a formal sum of resource
approximants:

𝒯(𝑥) ≔ 𝑥 {𝑥}
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀) { 𝜆𝑥.𝑠 | 𝑠 ∈ 𝒯(𝑀) }

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!𝒯(𝑁)

𝑛 { 𝑠[𝑡1,… , 𝑡𝑛] | ... }

𝒯(⊥) ≔ 0 ∅

... and this also works for infinitary terms (kind of).
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The linear approximation

𝑀 BT(𝑀)

𝒯(𝑀) 𝒯(BT(𝑀))

𝛽⊥
∞

≃

linear execution (finite!)

≃
16/27



Linear Approximation of the λ-calculus

Program execution is the β-reduction on λ-terms:

(𝜆𝑥.𝑀)𝑁 ⟶𝛽 𝑀[𝑁/𝑥]

It is confluent and strongly normalising!
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The linear approximation

𝑀 BT(𝑀)

𝒯(𝑀) 𝒯(BT(𝑀))

𝛽⊥
∞

≃
r

≃

Theorem (simulation) [C. and Vaux 2023, C. 2024]

If𝑀 ⟶∞
𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

Corollary (commutation)
nf(𝒯(𝑀)) = 𝒯(BT(𝑀)).

Other corollaries
All that we’ve seen before!
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Easier proofs, in a unified setting

And there’s more!

Corollary
𝑀 has a hnf through⟶∗

𝛽 or⟶∞
𝛽

iff the head reduction strategy terminates on𝑀
iff nf(𝒯(𝑀)) ≠ 0
iff𝑀 is typable in “the” intersection type system.

Corollary
The Genericity lemma.

Corollary
BT ∶ Λ∞

⊥ → Λ∞
⊥ is Scott-continuous.
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What about other settings?

• Lazy: it works perfectly.
• Extentional: it should work (but there’s an open problem to
solve first).

• Probabilistic: complicated but certainly funny...

• WIP: refinement in order to give a semantic accound of terms
“pushing to the infinity” different pieces of data

[C., Manzonetto, Saurin 2025]
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Some satellite questions



Conservativity of the linear approximation

Fact 1 (simulation, finite)
Let𝑀,𝑁 be finite λ-terms.
If𝑀 ⟶∗

𝛽 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

Problem 1 (conservativity, finite)
Is the converse true?

Theorem 1 [C. and Vaux 2025]

Yes it is! If 𝒯(𝑀) −↠r 𝒯(𝑁) then𝑀 ⟶∗
𝛽 𝑁.

21/27



Conservativity of the linear approximation

Fact 2 (simulation, infinitary)
Let𝑀,𝑁 be infinitary λ-terms.
If𝑀 ⟶∞

𝛽 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

Problem 2 (conservativity, infinitary)
Is the converse true?

Theorem 2 [C. and Vaux 2025]

No, it isn’t!
There are terms A, Ā such that 𝒯(A) −↠r 𝒯(Ā) but there is no
reduction A ⟶∞

𝛽 Ā.

A is the Accordion λ-term.
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The Accordion

A ⟶∗
𝛽 𝑃(0)

⟶
∗

𝛽

•

⟨T⟩ 𝑄0

⟶
∗ 𝛽

𝑃(1)

⟶
∗

𝛽

•

⟨T⟩ •

⟨F⟩ 𝑄1

⟶
∗ 𝛽

𝑃(n)

⟶
∗

𝛽

•

⟨T⟩ •

⟨F⟩
•

⟨F⟩ 𝑄𝑛

𝑃(n)

⟶
∗

𝛽

•

⟨T⟩ •

⟨F⟩
•

⟨F⟩ 𝑄𝑛

Ā = •

⟨T⟩ •

⟨F⟩ •

⟨F⟩
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Conservativity of the linear approximation

Problem 3 (restoring conservativity)
Can we restrict −↠r to obtain a conservative approximation?

Theorem 3 [C. and Vaux 2025]

Yes, thanks to the uniform lifting of the resource reduction⟶⌢ ∞
r !

If 𝒯(𝑀)⟶⌢ ∞
r 𝒯(𝑁) then𝑀 ⟶∞

𝛽 𝑁.

In particular, there is no reduction 𝒯(A)⟶⌢ ∞
r 𝒯(Ā).

24/27



α-equivalence for mixed higher-order terms

• In the finite λ-calculus, we “just” quotient by α-equivalence.

• With infinitary λ-terms it’s not that easy...
• ... but a solution can be found! [Kurz et al. 2013, C. 2025]
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𝑈(𝜇𝑍.ℱΣ(𝑍, 𝑍))
𝜇𝑍.ℱΣ(𝑍, 𝑍)

𝒯Σ
𝜈𝑌.𝜇𝑋.ℱΣ(𝑋, 𝑌)

𝒯∞
Σ

𝒯∞
Σ /=𝛼

𝒯Σ/=𝛼
𝑈(𝜇𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞

compl.

≠

compl.

• ... but a solution can be found! [Kurz et al. 2013, C. 2025]
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𝑈(𝜇𝑍.ℱΣ(𝑍, 𝑍))
𝜇𝑍.ℱΣ(𝑍, 𝑍)

𝒯Σ
𝑈(𝜈𝑌.𝜇𝑋.ℱΣ(𝑋, 𝑌))

(𝒯∞
Σ )fs (𝒯∞

Σ )ffv
𝜈𝑌.𝜇𝑋.ℱΣ(𝑋, 𝑌)

𝒯∞
Σ

𝒯Σ/=𝛼
𝑈(𝜇𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞fs
𝑈(𝜈𝑌.𝜇𝑋.𝒬Σ(𝑋, 𝑌))

(𝒯∞
Σ )ffv/=𝛼 (𝒯Σ/=𝛼)∞

nom.
compl.

compl.

nom.
compl.

compl.

⌟
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What’s next?



What’s next?

Towards real life!

• Stream calculi
• Starting from non-wellfounded proofs
• Starting for Λ𝜇

• Concurrent programs
• Looking at implicit complexity

• Non-wellfounded proofs for proof assistants
• We need a compositional syntax

• Higer-order model checking
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Thanks for your attention!
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