LINEAR APPROXIMATIONS OF FUNCTIONAL PROGRAMS, REVISITED

Rémy Cerda, CNRS, IRIF Séminaire APR (LIP6, Paris), 2 April 2025

This is mostly joint work with Lionel Vaux Auclair.

program := instruction (program, ..., program)

result = program that cannot be further executed (normal form)

But the result might be *infinite* and *infinitely far*:

What we can compute in finite time are *partial results*:

What we can compute in finite time are *partial results*:

As a summary:

[Wadsworth, Hyland, Barendregt, 1970s]

and the result is the *limit* of all partial results: it's a *continuous* approximation.

Linear programs: each argument of a function is used *exactly once*.

Linear programs: each argument of a function is used exactly once.

Linear programs: each argument of a function is used exactly once.

6/27

λ-terms:

 $\begin{array}{rcl} M,N,\ldots &\coloneqq & x & \mid & \lambda x.M & \mid & MN \\ & & x \mapsto M & & M(N) \end{array}$

 $\lambda \perp$ -terms:

LET'S GO MORE TECHNICAL

Approximations of the λ -calculus

The **linear** approximation:

What is finite prefix of stable information? A **head normal form** $\lambda x_1 \dots \lambda x_{m} . (y) M_1 \dots M_n$.

What is the total information a term can output? Its **Böhm tree**:

$$\operatorname{BT}(M) \coloneqq \begin{cases} \lambda \vec{x}.(y) \operatorname{BT}(M_1) \dots \operatorname{BT}(M_n) & \text{if } M \longrightarrow_{\beta}^* \lambda \vec{x}.(y) M_1 \dots M_n \\ \bot & \text{otherwise.} \end{cases}$$

This is a coinductive definition: $BT(Y) = \lambda f.fff...$

Approximations of the λ -calculus

The **continuous** approximation:

The **linear** approximation:

An infinitary λ -calculus

Infinitary terms

(via coinduction, metric completion, ideal completion)

• Infinitary reductions (*via* coinduction, transfinite sequences of reductions)

Theorem

[Kennaway et al. 1997]

 $\longrightarrow_{\beta\perp}^{\infty}$ is confluent.

Corollary

BT(*M*) is the unique $\beta \perp$ -normal form of *M* through $\longrightarrow_{\beta \perp}^{\infty}$.

Approximations of the λ -calculus

The **continuous** approximation:

The **linear** approximation:

THE CONTINUOUS APPROXIMATION

The **continuous** approximation:

Continous approximation theorem

- $\mathcal{A}(M) := \left\{ P \text{ in } \beta \bot \text{-nf} \mid \exists M', M \longrightarrow_{\beta}^{*} M' \sqsupseteq P \right\} \text{ is directed.}$
- $\bigsqcup \mathcal{A}(M) = \operatorname{BT}(M)$.

THE LINEAR APPROXIMATION

Linear programs are **resource** λ **-terms**:

 $s, t, \dots := x \mid \lambda x.s \mid s[t_1, \dots, t_n]$

A λ -term is **Taylor expanded** into a formal sum of resource approximants:

$$\mathcal{T}(x) \coloneqq x \qquad \{x\}$$
$$\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M) \qquad \{\lambda x.s \mid s \in \mathcal{T}(M)\}$$
$$\mathcal{T}(MN) \coloneqq \mathcal{T}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{T}(N)^n \qquad \{s[t_1, \dots, t_n] \mid \dots\}$$
$$\mathcal{T}(\bot) \coloneqq 0 \qquad \varnothing$$

... and this also works for infinitary terms (kind of).

THE LINEAR APPROXIMATION

Program execution is the β -reduction on λ -terms:

 $(\lambda x.M)N \longrightarrow_{\beta} M[N/x]$

Linear execution is the **resource reduction** on resource λ -terms:

Linear execution is the **resource reduction** on resource λ -terms:

Linear execution is the **resource reduction** on resource λ -terms:

It is confluent and strongly normalising!

THE LINEAR APPROXIMATION

Theorem (simulation) If $M \longrightarrow_{\beta \perp}^{\infty} N$ then $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$.

Corollary (commutation)

 $nf(\mathcal{T}(M)) = \mathcal{T}(BT(M)).$

Other corollaries

All that we've seen before!

[C. and Vaux 2023, C. 2024]

And there's more!

Corollary

M has a HNF through $\longrightarrow_{\beta}^{*}$ or $\longrightarrow_{\beta}^{\infty}$ iff the head reduction strategy terminates on *M* iff nf($\mathcal{T}(M)$) $\neq 0$ iff *M* is typable in "the" intersection type system.

Corollary The Genericity lemma.

Corollary

BT : $\Lambda^{\infty}_{\perp} \to \Lambda^{\infty}_{\perp}$ is Scott-continuous.

- Lazy: it works perfectly.
- **Extentional:** it should work (but there's an open problem to solve first).
- Probabilistic: complicated but certainly funny...
- WIP: refinement in order to give a semantic accound of terms "pushing to the infinity" different pieces of data

[C., Manzonetto, Saurin 2025]

SOME SATELLITE QUESTIONS

Fact 1 (simulation, finite)

Let M, N be finite λ -terms. If $M \longrightarrow^*_{\beta} N$ then $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$.

Problem 1 (conservativity, finite)

Is the converse true?

Theorem 1

[C. and Vaux 2025]

Yes it is! If $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{*} N$.

Fact 2 (simulation, infinitary) Let M, N be infinitary λ -terms. If $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \longrightarrow_{r} \mathcal{T}(N)$.

Problem 2 (conservativity, infinitary)

Is the converse true?

Theorem 2

[C. and Vaux 2025]

No, it isn't! There are terms A, \overline{A} such that $\mathcal{T}(A) \longrightarrow_{r} \mathcal{T}(\overline{A})$ but there is no reduction $A \longrightarrow_{\beta}^{\infty} \overline{A}$.

A is the *Accordion* λ -term.

 $\mathbb{A} \longrightarrow^*_{\beta} P(0)$

Problem 3 (restoring conservativity)

Can we restrict \twoheadrightarrow_r to obtain a conservative approximation?

Theorem 3 [C. and Vaux 2025] Yes, thanks to the *uniform* lifting of the resource reduction $\widehat{\longrightarrow}_{r}^{\infty}$! If $\mathcal{T}(M) \widehat{\longrightarrow}_{r}^{\infty} \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$. In particular, there is no reduction $\mathcal{T}(A) \widehat{\longrightarrow}_{r}^{\infty} \mathcal{T}(\bar{A})$.

α -EQUIVALENCE FOR MIXED HIGHER-ORDER TERMS

- In the finite $\lambda\text{-calculus},$ we "just" quotient by $\alpha\text{-equivalence}.$

α -EQUIVALENCE FOR MIXED HIGHER-ORDER TERMS

- In the finite λ -calculus, we "just" quotient by α -equivalence.
- With infinitary λ-terms it's not that easy...

α -Equivalence for mixed higher-order terms

- In the finite λ -calculus, we "just" quotient by α -equivalence.
- With infinitary λ-terms it's not that easy...
- ... but a solution can be found! [Kurz et al. 2013, C. 2025]

WHAT'S NEXT?

Towards real life!

- Stream calculi
 - Starting from non-wellfounded proofs
 - Starting for $\Lambda\mu$
- Concurrent programs
 - Looking at implicit complexity
- Non-wellfounded proofs for proof assistants
 - We need a compositional syntax
- Higer-order model checking

Thanks for your attention!